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We study the roughening transition of an interface in an Ising system on a 3D 
simple cubic lattice using a finite-size scaling method. The particular method has 
recently been proposed and successfully tested for various solid-on-solid models. 
The basic idea is the matching of the renormalization-groupflow of the interface 
with that of the exactly solvable body-centered cubic solid-on-solid model. We 
unambiguously confirm the Kosterlitz-Thouless nature of the roughening transi- 
tion of the Ising interface. Our result for the inverse transition temperature 
KR=0.40754(5) is almost two orders of magnitude more accurate than the 
estimate of Mon, Landau, and Stauffer. 

KEY WORDS: Ising model; roughening transition; Monte Carlo; finite-size 
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1. I N T R O D U C T I O N  

Interfaces p lay  an essential  role in m a n y  areas  of  science. In  condensed  
ma t t e r  physics,  the mos t  p rominen t  examples  are  surfaces of  l iquids and 
solids. In 1951 Bur ton  et  al. Ill  poin ted  out  tha t  a phase  t rans i t ion  may  occur  
in the equi l ib r ium s t ructure  of  crysta l  surfaces. Such a phase  t rans i t ion  
from a smoo th  to a rough  surface is called a roughen ing  t ransi t ion.  They  
viewed a growing  layer  of  a crystal  as a two-d imens iona l  Ising model .  The  
pa r t  of  the layer  occupied  by a toms  is represented  by  spin + 1, while the 
vacancies  are represented  by spin - 1 .  F r o m  the exact  so lu t ion  of  the two- 
d imens iona l  Ising mode l  I-') one then infers the existence o f  a phase  t ransi-  
tion. However ,  this pic ture  of  a crystal  surface is very crude. Obv ious ly  in 
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a real crystal surface there is more than just one single incomplete layer of 
atoms. 

A better description of a crystal in equilibrium with its vapor is 
provided by the three-dimensional Ising model, where spin + 1 represents 
a site occupied by an atom, while spin - 1  represents a vacancy. The 
boundary conditions are chosen such that an interface between a region 
with most spins equal to + 1 and a region with most spins equal to - 1 is 
present. In 1973 Weeks et al. (3) performed a low-temperature expansion for 
the width of an (001) interface in a three-dimensional Ising model on a 
simple cubic lattice with isotropic couplings. They obtained a roughening 
temperature TR=0.57T,., where T,. is the temperature of the bulk phase 
transition, while the approximation of the interface by the two dimensional 
Ising model yields TR = 0.503T,.. The best known value for the inverse of 
the critical temperature of the three-dimensional Ising model on a simple 
cubic lattice is given by fl = 0.2216546(10). (41 

A fairly good approximation of the Ising interface is given by the so- 
called SOS (solid-on-solid) models. Neglecting overhangs of the interface 
and bubbles in the bulk, the variables of the two dimensional models give 
the height of the interface measured above some reference plane. A duality 
transformation exactly relates these models with two-dimensional X Y  
models. (5) In contrast to the two-dimensional Ising model, which undergoes 
a second-order phase transition, SOS models, like X Y  models, are expected 
to undergo a Kosterlitz-Thouless (KT) phase transition (see, e.g., refs. 6). 

The important question is whether overhangs of the interface and 
bubbles in the bulk phases are irrelevant for the critical behavior of the 
interface in the Ising model, so that the roughening transition is of KT 
nature as it is the case for SOS models. Monte Carlo simulations of the 
interface in a three-dimensional Ising model have been performed in order 
to answer this questions) 7-91 

However, the numerical determination of the transition temperature 
and the confirmation of the KT nature of the phase transition has turned 
out to be extremely difficult. The reason for this problem can be found in 
the KT theory itself. At the roughening transition corrections are present 
that vanish logarithmically with the length scale. Therefore for all lattice 
sizes that can be simulated one is quite far from the Gaussian fixed point 
that is the basis for the formulas used for fits in refs. 7-9. In order to over- 
come this problem one has to take into account the logarithmic corrections 
in the analysis of the dataJ t0~ 

However one can do even better. The body-centered-cubic solid-on- 
solid (BCSOS) model that was introduced by van Beijeren in 197T ~'~ as a 
solid-on-solid approximation of an interface in an Ising model on a body- 
centered cubic lattice on a (001) lattice plane is solved exactly. The BCSOS 
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model is equivalent to one of the exactly solved vertex models. ~12-~4) The 
exact formula for the free energy and the correlation length proves that the 
model has a KT-type phase transition. 

In refs. 15 and 16 it was proposed to match the renormalization group 
(RG) flow of other SOS models and the Ising interface with that of the 
BCSOS model. The RG flow is monitored by properly chosen block 
observables on finite lattices. In order to determine the roughening tem- 
perature of an SOS model or the Ising interface one has to find the 
temperature where the values for the block observables for the BCSOS 
model at the roughening temperature are reproduced. 

This method has been successfully applied to the ASOS (absolute- 
value SOS) model, the discrete Gaussian model, and the dual of the 
standard X Y  model in two dimensions/~5~ Preliminary results were also 
obtained for the Ising interfaceJ ~6~ 

In the present paper we improve the result of ref. 16 by drastically 
increasing the statistics for the Ising model as well as for the BCSOS 
model. The largest lattice size considered is increased from 64 x 64 • 27 to 
256 • 256 • 31 allowing the direct matching of the Ising interface with the 
BCSOS model compared with the indirect approach via the ASOS model 
of ref. 16. The high statistical accuracy needed for the matching method 
could be obtained in a moderate amount of CPU time (about two months 
on a workstation) due to the use of highly efficient cluster algorithms for 
the Ising interface ~-'31 as well as for the BCSOS model/221 

This paper is organized as follows. In Section 2 we define the models 
to be studied. We summarize exact results for the BCSOS model t~2-14~ rele- 
vant to our study. We briefly discuss the RG flow diagram of the KT phase 
transition. In Section 3 we describe the matching method. We give par- 
ticular emphasis to the special problems arising in the case of the Ising 
interface. In Section 4 we discuss our numerical results. A comparison with 
previous Monte Carlo studies is presented in section 5. In Section 6 we give 
our conclusions and an outlook. 

2. T H E  M O D E L S  

We consider an Ising model on a simple cubic lattice with extension L 
in the x and y directions and with extension D in the z direction. For reasons 
given by the algorithm we only consider odd values of D. We have chosen 
the convention that the z coordinate of the lattice points takes the half-integer 
values z = - D / 2  ..... D/2. The Ising model is defined by the partition function 

Z =  ~ e x p ( - K t H )  (1) 
s j = + l  
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where the classical Hamiltonian is given by 

H =  - ~ J<ij>sisj (2) 
<U> 

where the summation is taken over all nearest neighbor pairs ( ( / )  on the 
lattice, and K~= 1/k B T is the normalized inverse temperature. In the x and 
y directions we consider periodic boundary conditions. In order to create 
an interface we apply anti-periodic boundary conditions in the remaining 
z direction. Antiperiodic boundary conditions are defined by J<o> = - 1 for 
bonds ( t j )  connecting the lowermost and uppermost planes of the lattice, 
while all other nearest neighbor pairs keep J<o> = 1. 

The ASOS model is the solid-on-solid approximation of an interface in 
an Ising system on a simple cubic lattice on a (001) lattice plane. It is 
defined by the partition function 

Z 
hi \ ( i, j )  

where hi is integer-valued and the summation is taken over the nearest 
neighbor pairs of a 2D square lattice. At low temperatures the Ising inter- 
face and the ASOS model are related by 2K ~= K As~ 

In the case of the BCSOS model the two-dimensional lattice splits into 
two sublattices like a checkerboard. In the original formulation, on one of 
the sublattices the spins take integer values, whereas the spins on the other 
sublattice take half-integer values. We adopt a different convention: spins on 
"odd" lattice sites take values of the form 2n + �89 and spins on "even" sites 
are of the form 217 - �89 n integer. As a consequence, the effective distribution 
for block spins ( =  averages over blocks) will be centered around integer 
values (instead of half-integer values), and the average of the lowest energy 
configurations takes integer values as in the case for the ASOS models defined 
above. The partition function of the BCSOS model can be expressed as 

Z = ~ e x p ( - K S  ~ Ih~--hk,) (4) 
h [i. k ]  

where i and k are next to nearest neighbors. Nearest neighbor spins hi and 
hy obey the constraint Ihi-hyl = 1. Van Beijeren ll~l has shown that the 
configurations of the BCSOS model are in one-to-one correspondence to 
the configurations of the F model, which is a special six-vertex model. The 
F model can be solved exactly with transfer matrix methods 1~2-~41. For our 
choice of the field variable the roughening coupling is given by 

KS= �89  
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The critical behavior of non-local quantities such as the correlation length 
is known and has the form predicted by KT theory, t ~41 

The RG flow of SOS models is well described by two parameters fl 
and yj6~ The two-dimensional sine-Gordon model is especially suited to 
discuss the flow of these parameters with the length scale, since this model 
contains fl and y as bare parameters in its action. On the lattice it is given 
by the partition function 

( '  ) z S G = I [ d ~ b ] e x  p -~--~ Y' (~bi-~bj)Z+y~,. cos(2n~b;) (5) 
( i , j )  

where the ~b; are real numbers. 
For the continuum version of the model with a momentum cutoff one 

can derive the parameter flow under infinitesimal RG transformationsJ 6) It 
is given, to second order in perturbation theory, by 

~ =  --z  ~, ~ = x z  (6) 

where z = cons t .y  and x = n i l - 2 .  Here, const depends on the particular 
cutoff scheme used. The derivative is taken with respect to the logarithm of 
the cutoff scale. For large x, z flows toward z = 0 .  The large-distance 
behavior of the model is therefore the same as that of the massless 
Gaussian model. For small x, z increases with increasing length scale. The 
theory is therefore massive. The critical trajectory separates these two 
regions in the coupling space. It ends at a Gaussian fixed point charac- 
terized by x = 0  or f l = 2 / n .  On the critical trajectory the fugacity 
vanishes as 

1 (7) z ( t ) -  _ ,  
-o + t  

where t is the logarithm of the cutoff scale. 

3. T H E  M A T C H I N G  M E T H O D  

In order to compare the RG flows of the Ising interface and the 
BCSOS model we follow closely the method introduced in ref. 15. This 
method is closely related to the finite-size scaling methods proposed by 
Nightingale ~ ~9~ and Binder. t2~ No attempt is made to compute the RG flow 
of the couplings explicitly, but rather the RG flow is monitored by evalu- 
ating quantities that are primarily sensitive to the lowest frequency 
fluctuations on a finite lattice. 
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In order to separate the low-frequency modes of the field a block-spin 
transformation t'-]~ is used. Blocked systems of size l x l are considered. The 
size B of a block (measured in units of the original lattice spacing) is then 
given by B = L/1, where L is the linear size of the original lattice. For solid- 
on-solid models the block spins are defined by 

q~j = B--" ~, hj (8) 
jEy 

where y labels square blocks of a linear extension B. One should note that 
this linear blocking rule has the half-group property that the successive 
applications of two transformations with a scale factor of B have exactly 
the same effect as a single transformation with a scale factor of B 2. 

Since the position of the interface in the Ising system is not well 
defined on a microscopic level, we have to look for a substitute of the 
blocking rule applied to the field of the SOS models. In the following we 
briefly discuss the solution of the problem proposed and applied to the 
study of interfaces in the rough phase in ref. 24. 

First we have to ensure that the interface is not located at the 
z = - D / 2  to z = D/2 boundary, in which case the definition of the block 
spin discussed below would become meaningless. Therefore we locate the 
interface in the system in a crude fashion, which is done by searching for 
the - slice with the smallest absolute value of the magnetization. Then we 
redefine the z coordinate such that the interface is located close to z = 0. 
Now one can go ahead with the measurement of interface properties, 
ignoring the periodicity of the lattice in the - direction. 

The blocks considered have the full lattice extension D in the - direc- 
tion and an extension B in x and y directions. The interface position is 
defined inside a block by 

Mr 
c~r - 2roB2 (9) 

where Mr is the total magnetization in the block i" and m is the bulk 
magnetization. This definition is motivated by the naive picture that above 
the interface the magnetization takes uniformly the value - m  and below 
the value m. 

One has to discuss to what extent the meaning of the above definition 
is spoiled by corrections to this simple picture. What are the effects of bulk 
fluctuations and overhangs of the interface? The fluctuations of the bulk 
magnetization are given by the magnetic susceptibility Z- The square of the 
fluctuations of M7 induced by the bulk fluctuation is therefore given by 
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~2(M7) = DB'-x and the resulting fluctuations of ~b 7 induced by bulk fluctua- 
tions is given by 

, 1 D Z (10) 
trg(~bT) - 4 B 2 m 2 

As a consequence, the larger the block size in the x and y directions, the 
better is the position of the interface defined. However, when D is sent to 
infinity for a fixed B, the position of the interface defined by Eq. (9) 
becomes meaningless. 

In refs. 23 and 15 we proposed a radical solution to overcome the 
problem of bulk fluctuations completely. Before the position of the interface 
is determined all bubbles are removed. Technically this is accomplished by 
performing standard cluster updates at K =  oz. Since the absolute value of 
the bulk magnetization becomes 1 in this process, the definition of the 
interface position is modified to 

/~f7 

Overhangs of the interface are expected on a scale of the bulk correlation 
length ~b. Therefore we have to assume that the position of the interface 
only has a well-defined meaning if the block size is large compared with the 
bulk correlation length B>>~b. At the roughening transition this is, 
however, no severe restrictions since, ~b ~ 0.3. 

Finally, one should ensure that no additional interfaces are created 
spontaneously. Following ref. 25, we have that the surface tension at 
K*=0.40 is cr=0.6721(1). This is certainly a lower bound for the surface 
tension at the roughening coupling to be found below. Therefore two 
additional interfaces are suppressed by at least a factor of D 2 
exp(-0.6721 x 2L2), which is certainly sufficient already for the smallest 
lattice size L - - 3 2  that we consider. 

Now we define suitable observables for the blocked systems discussed 
above. Motivated by the perturbation theory of the sine-Gordon model, we 
choose two types of observables, those "sensitive" to the flow of the kinetic 
term (flow of K), and those sensitive to the fugacity (periodic perturbation 
of a massless Gaussian model). For the first type of observables we choose 

AI = ((~bT- ~bj)) 

where J" and y are nearest neighbors on the block lattice, and 

(12) 

(13) 
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where 7 and k are next nearest neighbors. Note that these quantities are 
only defined for l >  1. As a monitor for the fugacity we take the following 
set of quantities (defined for l =  l, 2, 4): 

A3 = (cos(2n~b~)) 

A4 = (cos(2 .2~b7))  (14) 

A 5 = ( cos(3- 2zt~b 7)) 

3.1. Determination of the Roughening Coupling 

As discussed in ref. 15, there are two parameters which have to be 
adjusted in order to match the RG flow of the Ising interface with that of 
the critical BCSOS model: The coupling K ~ of the Ising interface and in 
addition the ratio b=BI/BS=LI/L s of the lattice sizes (and hence the 
block sizes) of the Ising model and the BCSOS model. A b ~ 1 is needed 
to compensate for the different starting points of the two models on the 
critical RG trajectory. In refs. 15 and 16, b = 3.3(3) was obtained. 

For the proper values of the roughening coupling K~ and the 
matching constant b observables of the Ising interface and the BCSOS 
model match like 

A',. ,(bS, K~R)= AS,. ,(B, K~R) + O(B -o') (15) 

where i indicates the observable and l the size of the blocked lattice. The 
O(B -'~) corrections are due to irrelevant operators, co is the correction-to- 
scaling exponent. The perturbation theory of the sine-Gordon model 
suggests co = 2. 

In order to obtain a numerical estimate for the roughening coupling 
K I of the Ising model and the matching factor b for a given lattice size L s 
of the BCSOS model we require that the equation above is exactly fulfilled 
for two block observables. 

In the following we consider the pairs (ALl, A3.1) and (A2.1, A3,~) for 
l =  2 and l =  4. Replacing .43,/ by A4,z or As, ~ leads to statistically poorer 
results. 

We solved the system of two equations for the two observables Ai,~ 
and Aj, ~ numerically by first computing the KI, ~(b) and K 1. ~(b) that solve 
the single equations for a given value of b. The intersection of the two 
curves K~,~(b) and K~,flb) gives us then the solution of the system of two 
equations. For  an illustration of this method see Figs. 5 and 6 of ref. 15. 
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In ref. 15 it was demonstrated that the corrections to scaling for the 
observables A~ and A 2 for SOS models are similar to those in the massless 
continuous Gaussian model. Therefore we considered the "improved" 
observable D~ which is defined as follows: 

D,(L)  - A ~~ A t(L) (16) 

A~I ~ is computed for the massless Gaussian model defined by 

x <x v)  

An improved quantity D2 is defined analogously. Explicit results for A] ~ 
and A~ ~ are given in Table 4 of ref. 15. 

Obviously this modification does not affect the large-L behavior since 
A~~ = A ~i~ + O(L-2).  In the following we will see that the results for 
our largest lattice sizes are virtually unaffected by this kind of improve- 
ment. However, the benefit for the smaller lattices will be clearly visible. 

4. DISCUSSION OF THE N U M E R I C A L  RESULTS 

First we simulated the BCSOS model at the roughening coupling 
K R = �89 In 2 on square lattices of the size L x L with periodic boundary 
conditions imposed. We considered lattices with sizes ranging from L = 8 
up to L = 96. The loop algorithm of Evertz et al. ~22) enabled us to reduce 
the statistical error of the BCSOS data compared with those given in 
ref. 15 by a factor of about 5. We performed 4 x 106 measurements through- 
out, except for L = 9 6 ,  where 3 x 10 6 measurements were performed. The 
number of loopupdates per measurement was 10 for L = 8 ,  up to 35 for 
L = 96. This number was chosen such that the integrated autocorrelation 
times in units of measurements were about 1. These simulations took about 
81 hr of CPU time on an IBM RISC System/6000 Model 590 (66 MHz) in 
total. The results for l =  4 for the critical BCSOS model are presented in 
Figs, 2-6. The numbers for the A's can be obtained from the authors on 
request. 

Next we performed the simulations of the Ising model at the best- 
known value t~61 KR=0.4074 for the roughening coupling. We used the 
modified cluster algorithm introduced in ref. 23. For a discussion of the 
algorithm see also ref. 24. The expectation values for K r in the neighbor- 
hood of the simulation point are then obtained by reweightingJ 261 
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First of all we had to ensure that our results are not spoiled by a too 
small extension in the z direction. Obviously the thickness of the lattice 
has to be large compared to the width of the interface itself. It turns out 
that this requirement can be easily fulfilled since the width of the interface 
at K R is smaller than 1 for the lattice size we will consider in the 
followingJ 7, 23.9.24) 

In refs. 23-25 the dependence of interface properties on the extension 
of the lattice in the z direction was carefully checked. For  couplings close 
to K a and lattice sizes L~<256 it turned out that for about  L >  l0 no 
dependence on D can be detected within the obtained accuracy. 

We performed an additional check for L =  128. We compared the 
interface width without bubbles for D = 1 5  and D = 3 1 .  We obtain 
W 0 = 0.64647(25) for D = 15 and W o = 0.64658(33) for D = 31. The defini- 
tion of W o is given below. 

Therefore we regard the extension D = 31 which we used throughout  
in the following simulations as perfectly safe. 

Per measurement we performed five H-updates  and f ive/-updates  and 
in addition one metropolis sweep, where H and I refer to reflections at 
half-integer and integer z values, respectively. The number  of updates per 
sweep was again chosen such that the integrated autocorrelation times in 
units of measurements are smaller than 1. The number  of measurements 
was 100,000 for most of the lattice sizes. For  L = 48, 192, and L = 256 we 
performed 93,500, 113,000 and 72,500 measurements, respectively. The 
total amount  of C P U  time used for the Ising simulations was about  63 days 
on an IBM RISC System/6000 Model 590 (66 MHz).  

4.1. The Interface Width  

Before discussing the results of the matching analysis, let us briefly 
study the behavior of the surface width, which was the basis of the Monte  
Carlo study of ref. 9. Following ref. 9, we define a normalized magnetiza- 
tion gradient as 

1 1 p(z) -2mbL2 [ M (z +-~)- M (z-~) 1 (18) 

where m b is the bulk magnetization and M the total magnetization of a z 
slice of the lattice. Now the interface width is given by 

(19) 
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We computed the interface width for the original configurations ( W 2) and 
after removing the bubbles (I3"o). In the rough phase of the Ising interface 
or an SOS model the surface width behaves like 

1 
W-' = const + 7---z---, In L (20) 

for sufficiently large L. Here fl~rr is determined by the point where the RG 
trajectory hits the x axis in the KT flow diagram. Therefore the slope of the 
curve at the roughening transition should be given by 1/rr 2. However, it 
was pointed out in refs. 15 and 10 that at the roughening transition correc- 
tions to this asymptotic behavior die out proportional to the fugacity (7), 
i.e., only proportional to the inverse of the logarithm of L. Hence these 
corrections cannot be neglected even for quite large lattice sizes. 

To check this anticipated behavior we plot the surface thickness for 
the BCSOS model and the Ising interface with bubbles and bubbles 
removed in Fig. 1. For comparison two straight lines with slope 1/zt 2 are 
given. It turns out that even when our largest lattice sizes are considered, 
the slope is about 10% larger than the asymptotic one. Using therefore 
Eq. (20) with the slope 1/re -~ as criterion to determine the roughening point 
leads to a considerably underestimation of the roughening temperature. 
Going to enormous lattice sizes such as L = 960 does not help that much to 
overcome the problem since the corrections die out only logarithmically in L. 

0,8 

0,7' 

0,6' 

0,5" 

0,4 -" 

0,00 

x Ising (bubbles removed) / J 
+ Ising (with bubbles) | ~ ~ 

tK • ,,4. 

' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I 

8 16 32 64 128 256 

L 

Fig. 1. Squared interface width W-' plotted versus the lattice size L. 
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4.2. Matching Results 

For the determination of the roughening temperature and the 
matching factor using the matching method we considered the four pairs of 
observables (AI.z, A3.2), (A2.2, A3.2), (AI.4, A3.4) and (A2,4, A3,4). In 
order to check the effect of removing the bubbles and the improvement by 
the continuous Gaussian model on our results we performed the whole 
analysis for the following four different choices of the observables: 

(i) The bubbles being removed from the bulk phases, using the 
improved D~ and Dz. 

The bubbles being removed from the bulk phases, using A~ (ii) 
and A_,. 

(iii) 

(iv) 

Not removing the bubbles, using the improved D, and D 2. 

Not removing the bubbles, using A~ and A2. 

In all cases the statistical errors of the estimates for the roughening 
coupling and the matching factor were computed from a jackknife analysis 
put on top of the whole matching procedure. 

The results for the roughening coupling K R for the Ising interface based 
on (i) and (ii) are summarized in Table I. Using the improved quantities D~ 

Tablel .  Resu l ts  f o r  t he  Roughening Coupling Obtained from Matching for 
Different Values of L and 1=2 ,  4 ~ 

L 1 At Di A2 D2 

32 2 0.40602(15) 0 .40727{14)  0.40657(16) 0.40831(21) 
48 2 0.40648(16) 0.40716(16) 0.40678(17) 0.40760(21) 
64 2 0.40675(14) 0 .40722(141  0.40692(15) 0.40735(18) 
96 2 0.40719(14) 0.40741(15) 0.40727(16) 0.40745(17) 

128 2 0.40733(15) 0.40748(16) 0.40734(19) 0.40748(21) 
192 2 0.40762(14) 0.40768(14) 0.40762(15) 0.40766(16) 
256 2 0.40748(14) 0.40751(14) 0.40762(16) 0.40765(16) 

32 4 0.40529(10) 0.40678(9) 0.40589(10) 0.40740(10) 
48 4 0.40610(9) 0.40709(8) 0.40647(9) 0.40748(9) 
64 4 0.40649(8) 0.40728(8) 0.40677(9) 0.40750(9) 
96 4 0.40702(8) 0.40745(8) 0.40717(8) 0.40754(9) 

128 4 0.40727(7) 0.40752(7) 0.40733(8) 0.40755(9) 
192 4 0.40753(7) 0.40766(7) 0.40754(7) 0.40764(8) 
256 4 0.40738(7) 0.40745(7) 0.40741(7) 0.40746(7) 

" For the matching A3./together with either ,4 ~.~, Dt , t ,  ,42.1, or D2. t are used. The bubbles in 
the lsing system are removed before the measurement. 
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Table II. Results for Matching Parameter 
L and 1=2 ,  4 ~ 

b for Di f ferent  

395 

Values of 

L 1 A I D 1 A 2 D 2 

32 2 2.12(4) 2.68(5) 2.346(6) 3.14( 11 ) 
48 2 2.30(8) 2.74(12) 2.49(10) 3.05(16) 
64 2 2.54( 11 ) 2.92(12) 2.68( 11 ) 3.02(16) 
96 2 2.60( 14 ) 2.84( 18 ) 2.69( 17 ) 2.88(20) 

128 2 2.85(19) 3.05(23) 2.86(24) 3.05(29) 
192 2 2.74(24) 2.82(27) 2.73(26) 2.80(28) 
256 2 3.08(33) 3.15(35) 3.45(44) 3.54(48) 

32 4 1.751(10) 2.048( 11 ) 1.864(13) 2.194(18) 
48 4 2.062(18) 2.419(22) 2.191(24) 2.548(28) 
64 4 2.311(26) 2.703(32) 2.442(33) 2.816(42) 
96 4 2.550(41) 2.87(6) 2.66(5) 2.95(7) 

128 4 2.68(6) 2.91(7) 2.73(7) 2.94(8) 
192 4 2.81(9) 2.96(10) 2.82(10) 2.94( 11 ) 
256 4 3.05( 11 ) 3.16(12) 3.10(13) 3.19(13) 

For the matching A_~.t together with either A~.t, D~.t, A2j, or D2. I are used. Bubbles are 
removed from the Ising configurations. 

and D2, we find that the results are consistent within two standard devia- 
tions starting from L = 96 for l =  2 as well as l =  4. For  our largest lattice 
size L = 2 5 6  the difference of the results when using the unimproved 
observables A l and A2 rather than D l and D2 is smaller than the statistical 
error. However, looking at the results obtained from L = 32 and L =48  
makes it clear that a major part of the correction to scaling is eliminated 
by using D t and D_, instead of Aj and A2. 

In Table II we present the results for the matching factor B based on 
(i) and (ii). The observations are analogous to those for the roughening 
coupling. 

For  a blocksize B/> 32 the results obtained from (iii) and (iv) are con- 
sistent within errorbars with those obtained from (i) and (ii). We therefore 
skip a detailed discussion of these results. 

Following the above discussion, we regard the results for K R and b 
obtained from (i) as the least affected by systematic errors. Therefore we 
take the weighted average of the results of (i) (i.e., the D, and D 2 columns 
of Tables I and II for l =  2, L/> 96, and l =  4, L ~> 128 as our final result. 

We obtain KR=0.40754(5) and B=2.97(7).  Computing the error- 
estimate, we have assumed that values obtained from the same simulation 
but from a different pair of observables are strongly correlated. 
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As an additional check of universality we plot all observables A; 
considered for the critical BCSOS model as well also the Ising interface at 
K R = 0.40754(5) as a function of L and L/b, respectively in Figs. 2-6. 

Figure 2 shows the observables A 1,4 and D I ,  4. The figure shows nicely 
the improvement gained by replacing A 1.4 by O i .  4. While the curves of 
A i, 4 for the Ising interface and the BCSOS model are only consistent for 
L~< 192, the consistency extends down to at least L = 9 6  when D~,4 is 
considered. For A2.4 and O2. 4 given in Fig. 3 this improvement is visible 
even more drastically. 

In the case of A3. 4 plotted in Fig. 4 the matching of the curves within 
the statistical accuracy sets in for LI~> 64. 

Figure 5 shows the observable A4.4.  This observable was not used for 
the determination of KR and b. The fact that for L 1 ~> 96 the curves of A4, 4 
for the Ising interface and the BCSOS model fall on top of each other 
strongly supports that the Ising interface and the BCSOS model have the 
same critical behavior. For L~>~ 128 also the curves of A5,4 for the Ising 
interface and the BCSOS model become identical within error bars (Fig. 6). 

Similar observations hold for l =  1 and /=2 .  (The corresponding 
figures are not reproduced here.) 

The matching program also allows to determine the nonuniversal 
constants appearing in formulas describing the divergence of observables 

822/85/3-4-7 
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near the roughening transition. The critical behavior of the correlation 
length ~ is described by 161 

= A exp(Cx-1/2) (21) 

Along the lines of Section 5.3 of ref. 15, we obtain A~=0.74(2) and 
C~= 1.03(2) for the Ising interface. 

5. C O M P A R I S O N  WITH OTHER STUDIES 

Let us compare our result, KR =0.40754(5), with results obtained in 
previous Monte Carlo studies of the Ising interface. 

We nicely confirm the value KR = 0.4074(3) obtained by Hasenbusch 1161 
using similar methods as used in the present paper. 

In a large-scale Monte Carlo simulation of lattices up to 960 x 
960 x 26 M o n e t  aft  9~ studied the behavior of the interface width. They 

i 0.409(4). obtained K R = 
M o n e t  al. ~8~ determined the step free energy on lattices of size up to 963. 

They gave the estimate T R/T c = 0.54(2 ), which corresponds to K R = 0.410(16). 
Bfirkner and Stauffer c7~ obtained in their pioneering study 

TR/T, .= 0.56(3), which corresponds to KR = 0.396(22). 
One should note that all these estimates are consistent within the 

quoted error bars with our present result. 
It is also interesting to compare the Ising interface results with those 

obtained in ref. 15 for the ASOS model, KAS~ and 
A S O S  - -  b m -2 .8(3) .  In the low-temperature limit the ASOS coupling and that of 

the Ising model are related as K~= �89 As~ At finite temperatures one 
expects that the bubbles and the overhangs disorder the Ising interface 
compared to the ASOS model. Hence one expects the roughening transi- 
tion of the Ising interface to occur at a lower temperature than for the 
ASOS model and indeed K ~ - l _  [('ASOS 2' 'R =0.0044 (2). 

Such a shift was already predicted by low-temperature expansions t271 
k-gsos= 0.787(24). However, one should note that K I R ,  L T  = 0.404(12) and "'R, L T  

the difference of these two results is smaller than the given error bars. The 
matching factors for the two models are equal within the quoted error bars. 
The direct matching of the Ising interface with the ASOS model performed 
in ref. 16 gives the more precise result b~,,/bAS~ 1.17(4) for this particular 
comparison. 

6. C O N C L U S I O N  A N D  OUTLOOK 

Using the finite-size scaling method of ref. 15, we unambigously 
demonstrated the KT  nature of the roughening transition in the (001) 



400 Hasenbusch et  al. 

interface of the 3D Ising model. Our estimate for the inverse of the 
roughening temperature KR=0.40754(5) is almost a factor of 100 more 
accurate than the best previously published valueJ 9j 

Previous studies have been mainly plagued by logarithmic corrections 
at the roughening transition. This problem has been overcome completely. 

In addition, the use of efficient, virtually slowing-down-free cluster 
algorithms for the BCSOS model ~22~ and the Ising interface 123"241 allowed 
us to generate more than 106 independent configurations in the case of the 
BCSOS model and about 105 independent configurations for the Ising 
model for all lattice sizes using about 2 months of CPU time on an IBM 
RISC System/6000 Model 590 (66 MHz). 

This high statistical accuracy can be further improved, first, simply by 
using more CPU time and, secondly further improving the implementation 
of the algorithm. 
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